P.V.I.R Proposal Presentation

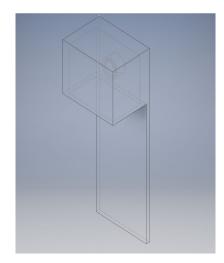
1/15/2019 Project Advisor: Lukas Graber

Stephanie Chan, stephchan40@gatech.edu Elizabeth Fuller, efuller3@gatech.edu Adrian Muñoz, am262601@gatech.edu Nelson Raphael, nraphael7@gatech.edu Lemek Robinson, lrobinson61@gatech.edu

Introduction

What Is It?

- Powervault Inspection Robot
- Will contain a movable robot with a sensor package on arm, testing environment for expo

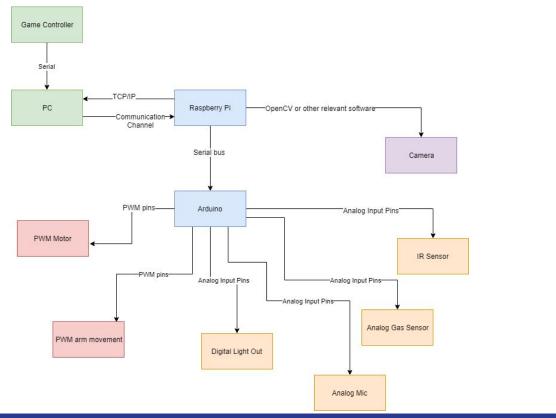

What is the purpose in industry?

• Reduces dangers for workers and speeds up repair and maintenance of vault

Goals

- Create boards with dummy gauges that represent a powervault setup
- Design remote controlled robot
- Display videofeed and sensor information

Specifications


Mechanical Arm Specs Height : Variable height from 1 - 6 feet Degrees of Freedom : 2 degrees of rotation Base Size : Fits in a 760mm Diameter Manhole

Sensor Package Specs Video : Can Stream Video to GUI Gas Sensor : Check Air Quality IR Thermal Camera : Record Thermal Images Microphone : Record Sounds

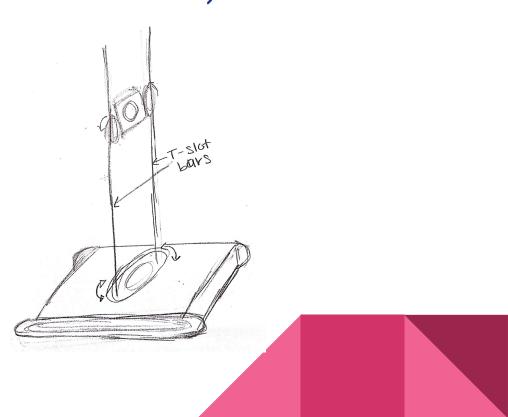
GUI Specs Mobile: Usable on Mobile Platforms Control Capabilities: Remotely Controllable Robot Logging: Log Information Data Streaming: Real-Time Data Streaming

Design Approach Overview

Design Approach (GUI)

		Kivy	Matlab App Builder	C#
1	Visual Graphical App Builder	×	\checkmark	\checkmark
2	Easy Communication to a Python System	\checkmark	×	×
3	Easy Parallel Task Completion	\checkmark	\checkmark	×
4	Easily Exportable to IOS or Android	\checkmark	×	\checkmark
5	Compatible with gaming controllers	\checkmark	×	\checkmark

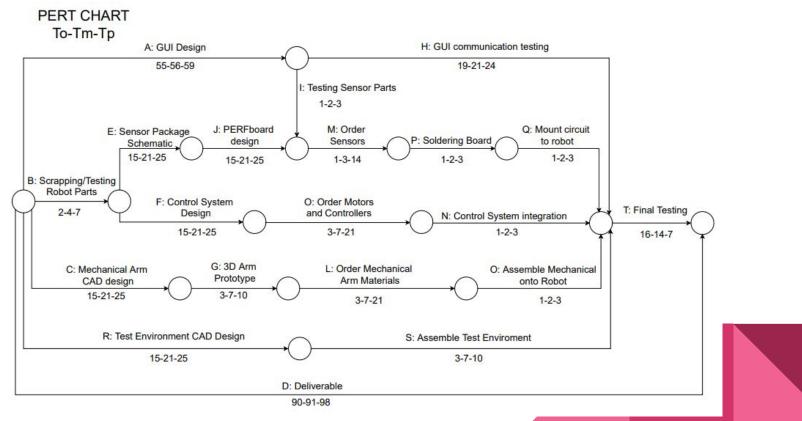
Design Approach (Control System)


- Perf Boards for mounting sensors
 - Aren't enough connections to need a PCB
- Sensor Package protective casing
 - \circ $\hfill Needs to be exposed to the air$
 - Needs to be water resistant
 - 3D printed
- Speed restrictions on motors
 - Restrict movement while arm is extended
 - Object detection to prevent collisions
- Ethernet Communication from PC to Pi
 - Easiest solution for our testing environment

Design Approach (Mechanical Arm)

- Max Extension Height

 6 ft
- Degrees of Rotation
 - 360 degrees
- Material
 - Metal T-Slots
- Camera Movement
 - Can move up and down vertically
- Lights
 - Mounted to camera



Testing Procedure and Criteria

- Moving robot with a controller
 - Speed/direction tests
 - Control/latency tests
 - Xbox 360/PS3 wired controller compatibility
- Mechanical Arm Mobility
 - Weight distribution tests
 - Total movement (up & down; rotation)
- Sensors relaying data to GUI
 - Accuracy tests
 - Expo is an non ideal environment for practical tests
 - Readability (how easy is it to interpret)
- GUI
 - Displays sensor data and video feed

Schedule

Status

- GUI Design: 20% compete
- Previous Robot/Sensor Package: Scrapped Materials acquired from past project:
 - Microphone w/pop filter
 - 2 Raspberry Pi B+
 - 2 Servos
 - 2 Motors
 - Light sensor/ring light
 - 2 Speed controllers
 - 1080p WebCam
 - Physical Robot
 - Sensor board

Robot currently located in West's lab

Status

- Mechanical Arm CAD design: 50% complete
 - T-slot bars designed in Solidworks
- CAD Model of Testing Environment: 95% complete
- Design Schematic: 50% complete
- Bill of Materials/Parts Ordering: 90% complete On hold

